

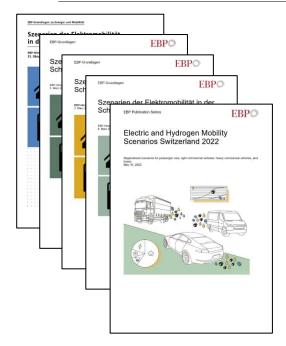
Elektromobilität bei EBP

2024

Neuste Studien von EBP

Link

Link

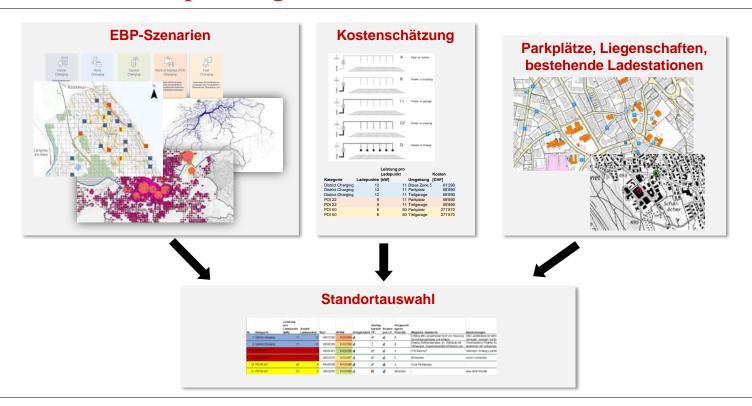

Link

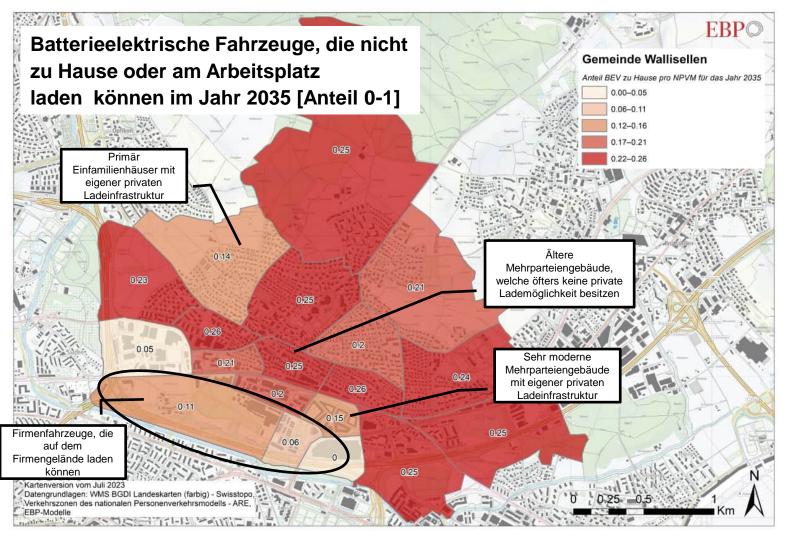
Link

Link

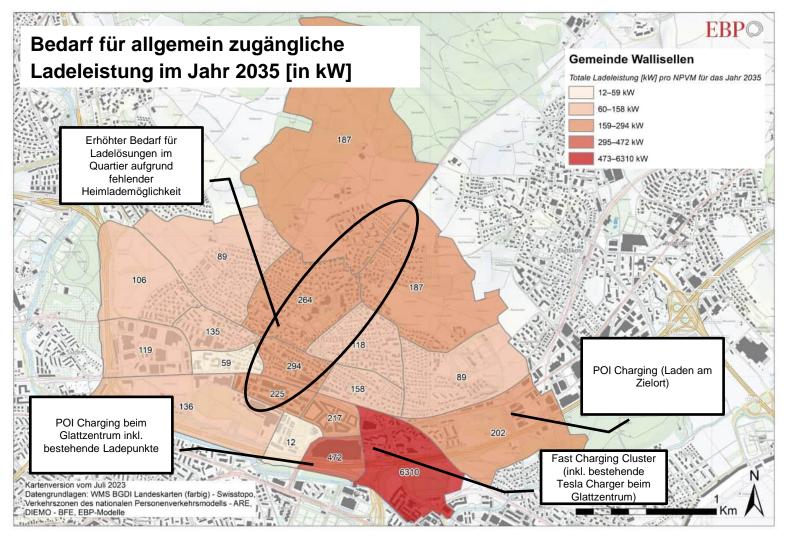
EBP-Szenarien

Die EBP-Elektromobilitätsszenarien sind die Planungsgrundlage von Bundesamt für Energie

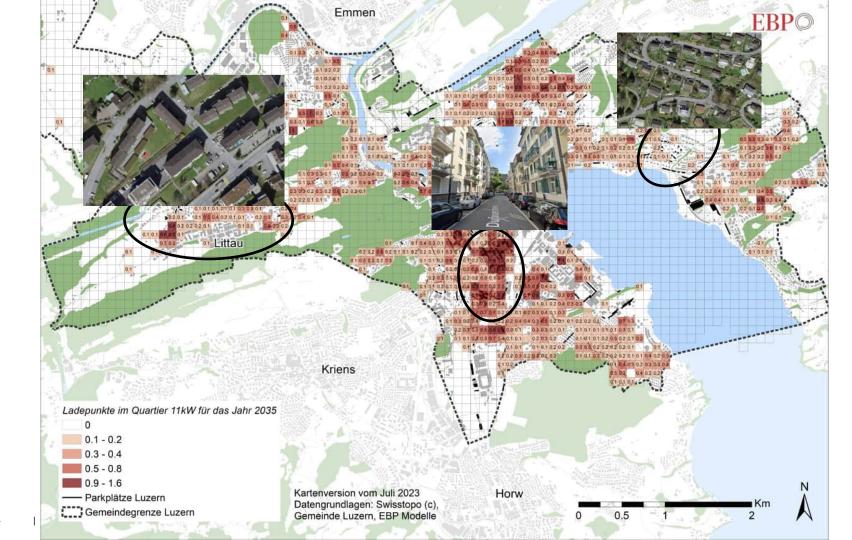

- · mehrere Szenarien verfügbar
- · feine räumliche Verteilung
- Entwicklung Fahrzeugbestand,
 Energie- und Ladeinfrastrukturbedarf differenziert nach Verkehrszonen pro Region

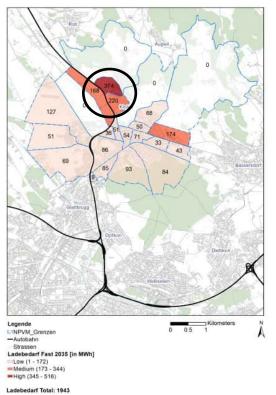


Ladeinfrastrukturplanung mit dem EBP Localizer

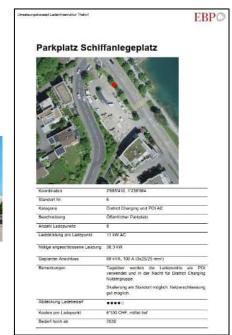


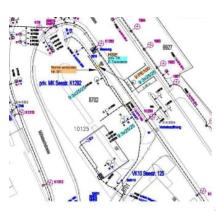
Ladeinfrastrukturplanung mit dem EBP Localizer





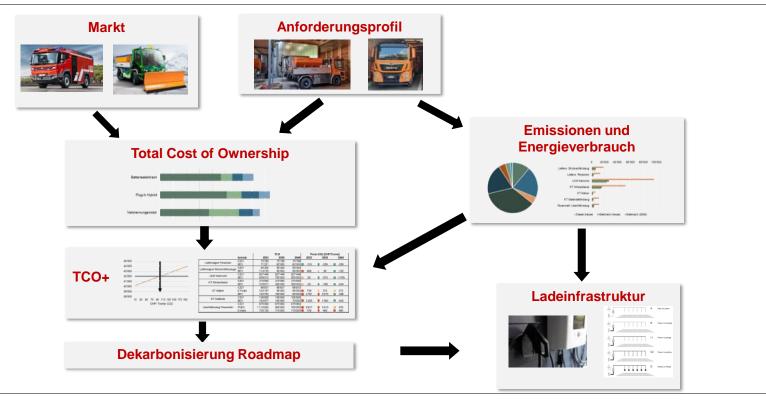
Die besten Standorte identifizieren mit dem EBP Localizer





Umsetzungsplanung für allgemein zugängliche Ladeinfrastruktur

- Trägerschafts- und Betreibermodelle für Gemeinden oder private Anbieter
- Standortauswahl und Priorisierung
- Technische Vertiefung, Kostenabschätzung je Standort

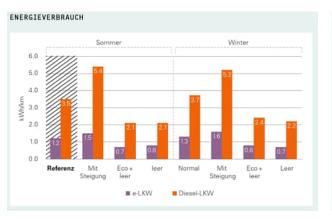


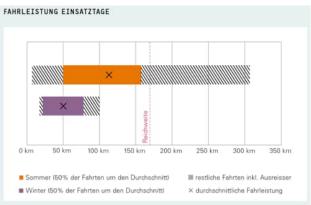
Dienstleistungen im Bereich Fahrzeuge

Dekarbonisierung der Fahrzeugflotte

Fahrzeuge

- Dekarbonisierung Roadmap Fahrzeugflotte
- Begleitung Ausschreibung Fahrzeuge
- Dekarbonisierung öffentlicher Verkehr, Elektrobusse
- Realverbrauchsmodell und Energieeffizienz bei Fahrzeugen
- Total Cost of Ownership
- Vergleich Antriebstechnologien





Pilotprojekt E-LKW für Mulden- und Winterdienst

Energie und Umwelt

Praxistauglichkeit

Wirtschaftlichkeit

TCO (5 JAHRE BESITZDAUER)

e-LKW

Diesel-LKW

100'000

Beschaffung

200'000

Energie

300,000

Unterhaltungskosten*

400'000

500'000

weitere Kosten

600,000

Elektrobusstrategie

Erarbeitung einer Strategie zur Erreichung des Netto-Null-Ziels:

- Prognose technologische Entwicklung
- Umlaufanalyse mit verschiedenen Szenarien und Massnahmen
- Charakterisierung heutiger Garagen
- Festlegung Strategie
- Umsetzungsplan: Ablöseplan, Ladekonzept, Dimensionierung Ladeinfrastruktur, Kostenschätzung und Investitionsplan

Begleitung Ausschreibungen Fahrzeuge

- Marktanalyse, Technologievergleich
- Juristische und technische Begleitung
- Bestimmen der technischen Spezifikationen (Batterie, Ladeinfrastruktur, usw.) um das Anforderungsprofil zu erfüllen
- Vorbereiten der Ausschreibungsunterlagen
- Bewertung der Offerten und Vertrag

Elektromobilität in Gemeinden

Überblick Angebot Elektromobilität für Gemeinden

Strategie nachhaltige Mobilität

Strategie

Elektromobilität:

- Politische Haltung und Positionierung
- Ziele, Handlungsfelder definieren
- Information & Beratung
- Angebote (z.B. Sharing)

Allgemein zugängliches Ladenetz:

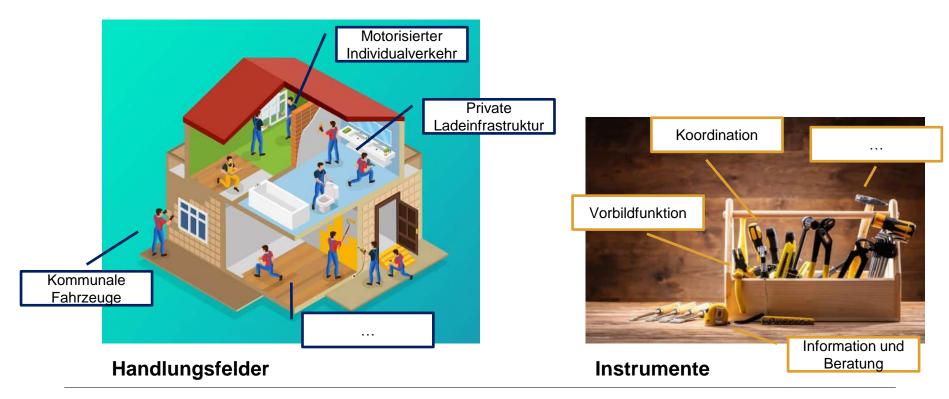
- Bedarfsermittlung
- Standortvorschläge und -priorisierung
- Rolle der Gemeinde
- Kosten- und
 Investitionsplanung
 Trägerschaftsmodelle

Kommunale Liegenschaften:

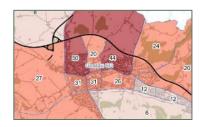
- Dimensionierung Ladeinfrastruktur
- Ausbauetappen
- Kosten und Geschäftsmodell

Dekarbonisierung kommunale Fahrzeugflotte:

- Welche Technologie ab wann und für welchen Fahrzeugtyp?
- Ablöseplan
- Kostenplanung



EBP-Szenarien, Technologietrends, Marktrends, Grundlagenstudien, politische Rahmenbedingungen

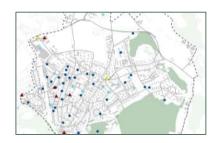


Handlungsfelder und Instrumente für Unterstützung Elektromobilität

Ausgewählte Referenzen

Ladekonzept Stadt Gossau

- Prognosen Entwicklung Elektromobilität
- Dimensionierung
 Ladeinfrastruktur städtische
 Liegenschaften und Kosten
- Rolle der Stadt und Trägerschaftsmodelle
- Handlungsempfehlungen öff. Ladeinfrastruktur


Elektromobilitätskonzept Knonaur Amt

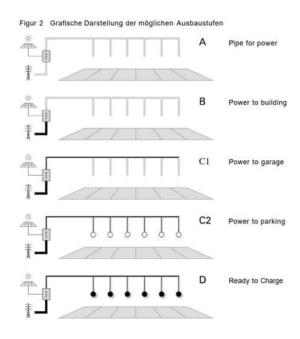
- Prognosen Entwicklung Elektromobilität und Ladebedarf
- Erarbeitung Massnahmen zur Unterstützung der E-Mobilität
- Wirkungsanalyse und Priorisierung der Massnahmen

Dekarbonisierung Roadmap Gemeinde Köniz

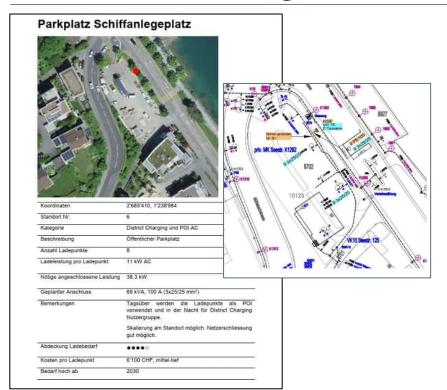
- Technologievergleich für die Fahrzeugkategorien
- Total cost of Ownership, Umweltauswirkungen
- Empfehlung Technologie und Umsetzungszeitpunkt

Umsetzung Ladeinfrastruktur Gemeinde Ostermundigen

- Räumliche Verteilung Ladebedarf
- Standortauswahl für öffentlich zugängliche Ladestationen
- Technische Abklärungen und Investitionsplan


Dienstleistungen im Bereich Ladestandorte und Stromnetz

Ladeinfrastruktur: Dimensionierung

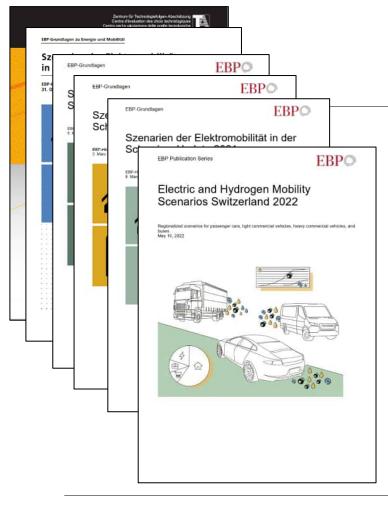

- Dimensionierung Ladeinfrastruktur an einem Standort
- Kostenschätzung und Ausbauetappen

Technische Vertiefung und Kostenabschätzung je Standort

Steckbriefe für jeden Ladestandort mit den relevanten Informationen zu

- Ladebedarf,
- Leistung,
- Anschlusstyp sowie
- den detaillierten Kosten pro Ladepunkt

Zielnetzplanung


2024

Der Zuwachs des Stromverbrauchserbrauchs von Elektromobilität und Wärmepumpen, sowie der starke Anstieg von dezentraler Stromproduktion von Photovoltaik-Anlagen stellen das Stromnetz unter hohen Druck für die Zukunft. In Szenarien werden diese Entwicklungen bis 2050 national oder lokal definiert. Ladeenergie 2030 Home, BEV und PHEV Szenario Netto Null «Divergenz» Photovoltaik E-Mobilität Wärmepumpen **EBPO** Quals Hotermonitaria Salestoni

Szenarien und Modelle

EBP-Elektromobilitätsszenarien

Szenarien kompatibel mit BFE-Energiestrategie, aber bottom-up berechnet (Neuwagenmarkt + Flottenmodell)

Szenario ZERO – E

Netto-null-Emissionen bis 2050, faktisches Verbrennerverbot für Personenwagen und leicht Nutzfahrzeuge ab 2035

- Szenario «Business as Usual»
- Szenario Zero Hydrogen Focus

Wie Zero – E aber Wasserstoff ersetzt Fahrzeugsegment mit Dieselantrieb ab 2030

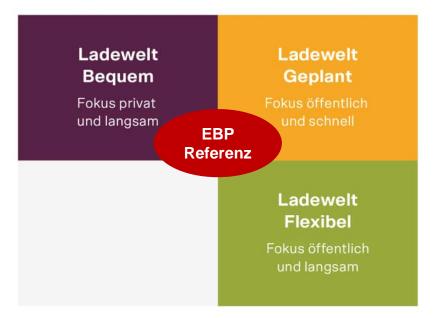
Die Szenarien zeigen die **Bandbreite** des möglichen künftigen Verlaufs

Modellaufbau in 7 Schritten

Wie findet man heraus, wie sich die Ladeinfrastruktur bis 2050 entwickelt?

2024 | Elektromobilität bei EBP

Drei Ladewelten

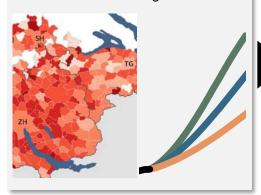

Konsistente Entwicklungen der künftigen Ladeinfrastruktur

Ein persönlicher Heimladepunkt ist in sehr vielen Fällen **verfügbar**

Ein persönlicher Heimladepunkt ist in vielen Fällen nicht verfügbar

Konzentriertes Angebot an allgemein zugänglichen Ladepunkten und punktuelles Angebot von Ladepunkten am Arbeitsplatz

Überall wird ein Angebot an allgemein zugänglichen Ladepunkten und Ladepunkten am Arbeitsplatz geschaffen


2024 | Elektromobilität bei EBP 30

In a nutshell – Szenarien und Ladebedürfnisse

Szenarien für 2202 Gemeinden

- Bevölkerung, Arbeitsplätze
- Gebäudeentwicklung
- Verkehrsentwicklung
- Antriebstechnologien

Einteilung in 5 Nutzergruppen

- Freizeit, Pendler, verschiedene Dienstfahrzeuge
- Charakteristisches Mobilitätsverhalten
- Spezifische Ladebedürfnisse

Ladeverhalten: 52 Ladetypen

- Verfügbarkeit der Ladeinfrastruktur
- AC/ DC
- BEV/ PHEV
- Batterien, Reichweite

Soziodemografische Einflüsse (EFH, MFH, Eigentum, Mieter, Einkommen, etc.)

- Wer kauft E-Fahrzeuge?
- Annahmen zur Verfügbarkeit der Ladeinfrastruktur

Feedback des Ladeangebots auf das Ladeverhalten

In a nutshell – verkehrliche Modellierung & Ladegeschäft

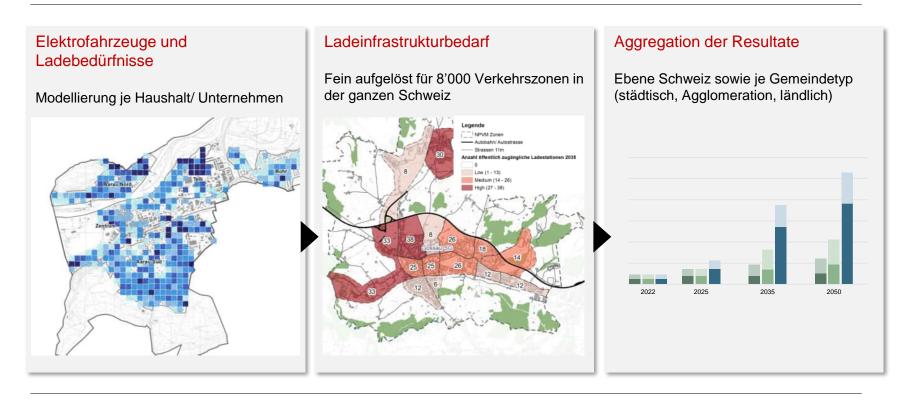
Ladebedürfnisse je Elektrofahrzeug und Bestimmung Standplatz

- Modellierung je Haushalt/ Unternehmen
- Strombedarf
- Aggregation auf NPVM-Zonen (>8'000 Zonen in der Schweiz)
- Gemäss Verursacherprinzip

Simulation mit dem Nationalen Personenverkehrsmodell

- Quell-Ziel-Matrizen aller NPVM-Zonen
- Bestimmung des Ladebedürfnisses im Zielgebiet auf Ebene NPVM-Zonen
- Anteil eigener/ importierter
 Ladebedarf

Aufbau der Ladeinfrastruktur


- Clustering des
 Ladebedürfnisses zu
 Marktgebieten mit hohem
 Potenzial (Parkplätze, POI,
 Verkehrsbelastung, etc.)
- Annahmen zum Ladeangebot
- Annahmen zur Nutzung der Ladeinfrastruktur

Feedback des Ladeangebots auf das Ladeverhalten

In a nutshell – räumliche Auflösung der Modellierung

EBP Team Energie + Mobilität

Silvan Rosser silvan.rosser@ebp.ch

Michele Chamberlin michele.chamberlin@ebp.ch

Peter de Haan peter.dehaan@ebp.ch

Lukas Lanz lukas.lanz@ebp.ch

Alessio Mina alessio.mina@ebp.ch

Tim Trachsel tim.trachsel@ebp.ch

Janis Münchrath janis.muenchrath@ebp.ch

Daniel Andersen daniel.andersen@ebp.ch